Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Pharmacol Rev ; 76(2): 251-266, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351072

RESUMO

Animals and animal models have been invaluable for our current understanding of human and animal biology, including physiology, pharmacology, biochemistry, and disease pathology. However, there are increasing concerns with continued use of animals in basic biomedical, pharmacological, and regulatory research to provide safety assessments for drugs and chemicals. There are concerns that animals do not provide sufficient information on toxicity and/or efficacy to protect the target population, so scientists are utilizing the principles of replacement, reduction, and refinement (the 3Rs) and increasing the development and application of new approach methods (NAMs). NAMs are any technology, methodology, approach, or assay used to understand the effects and mechanisms of drugs or chemicals, with specific focus on applying the 3Rs. Although progress has been made in several areas with NAMs, complete replacement of animal models with NAMs is not yet attainable. The road to NAMs requires additional development, increased use, and, for regulatory decision making, usually formal validation. Moreover, it is likely that replacement of animal models with NAMs will require multiple assays to ensure sufficient biologic coverage. The purpose of this manuscript is to provide a balanced view of the current state of the use of animal models and NAMs as approaches to development, safety, efficacy, and toxicity testing of drugs and chemicals. Animals do not provide all needed information nor do NAMs, but each can elucidate key pieces of the puzzle of human and animal biology and contribute to the goal of protecting human and animal health. SIGNIFICANCE STATEMENT: Data from traditional animal studies have predominantly been used to inform human health safety and efficacy. Although it is unlikely that all animal studies will be able to be replaced, with the continued advancement in new approach methods (NAMs), it is possible that sometime in the future, NAMs will likely be an important component by which the discovery, efficacy, and toxicity testing of drugs and chemicals is conducted and regulatory decisions are made.


Assuntos
Testes de Toxicidade , Animais , Humanos , Testes de Toxicidade/métodos , Modelos Animais
2.
Birth Defects Res ; 115(10): 959-966, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37218073

RESUMO

The Society for Birth Defects Research and Prevention (BDRP) strives to understand and protect against potential hazards to developing embryos, fetuses, children, and adults by bringing together scientific knowledge from diverse fields. The theme of 62nd Annual Meeting of BDRP, "From Bench to Bedside and Back Again", represented the cutting-edge research areas of high relevance to public health and significance in the fields of birth defects research and surveillance. The multidisciplinary Research Needs Workshop (RNW) convened at the Annual Meeting continues to identify pressing knowledge gaps and encourage interdisciplinary research initiatives. The multidisciplinary RNW was first introduced at the 2018 annual meeting to provide an opportunity for annual meeting attendees to participate in breakout discussions on emerging topics in birth defects research and to foster collaboration between basic researchers, clinicians, epidemiologists, drug developers, industry partners, funding agencies, and regulators to discuss state-of-the-art methods and innovative projects. Initially, a list of workshop topics was compiled by the RNW planning committee and circulated among the members of BDRP to obtain the most popular topics for the Workshop discussions. Based on the pre-meeting survey results, the top three discussion topics selected were, A) Inclusion of pregnant and lactating women in clinical trials. When, why, and how? B) Building multidisciplinary teams across disciplines: What cross-training is needed? And C) Challenges in applications of Artificial Intelligence (AI) and machine learning for risk factor analysis in birth defects research. This report summarizes the key highlights of the RNW workshop and specific topic discussions.


Assuntos
Inteligência Artificial , Pesquisa Interdisciplinar , Gravidez , Criança , Feminino , Humanos , Lactação , Estudos Interdisciplinares , Sociedades
3.
ALTEX ; 40(2): 217­236, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35796328

RESUMO

Evaluating chemicals for potential in vivo toxicity based on their in vitro bioactivity profile is an important step toward animal- free testing. A compendium of reference chemicals and data describing their bioactivity on specific molecular targets, cellular pathways, and biological processes is needed to bolster confidence in the predictive value of in vitro hazard detection. Endogenous signaling by all-trans retinoic acid (ATRA) is an important pathway in developmental processes and toxicities. Employing data extraction methods and advanced literature extraction tools, we assembled a set of candidate reference chemicals with demonstrated activity on ten protein family targets in the retinoid system. The compendium was culled from Protein Data Bank, ChEMBL, ToxCast/Tox21, and the biomedical literature in PubMed. Finally, we performed a case study on one chemical in our collection, citral, an inhibitor of endogenous ATRA production, to determine whether the literature supports an adverse outcome pathway explaining the compound's developmental toxicity initiated by disruption of the retinoid pathway. We also deliver an updated Abstract Sifter tool populated with these reference compounds and complex search terms designed to query the literature for the downstream consequences to support concordance with targeted retinoid pathway disruption.


Assuntos
Rotas de Resultados Adversos , Retinoides , Animais , Alternativas aos Testes com Animais , Técnicas In Vitro
4.
Front Pharmacol ; 13: 971296, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172177

RESUMO

All-trans retinoic acid (ATRA) gradients determine skeletal patterning morphogenesis and can be disrupted by diverse genetic or environmental factors during pregnancy, leading to fetal skeleton defects. Adverse Outcome Pathway (AOP) frameworks for ATRA metabolism, signaling, and homeostasis allow for the development of new approach methods (NAMs) for predictive toxicology with less reliance on animal testing. Here, a data-driven model was constructed to identify chemicals associated with both ATRA pathway bioactivity and prenatal skeletal defects. The phenotype data was culled from ToxRefDB prenatal developmental toxicity studies and produced a list of 363 ToxRefDB chemicals with altered skeletal observations. Defects were classified regionally as cranial, post-cranial axial, appendicular, and other (unspecified) features based on ToxRefDB descriptors. To build a multivariate statistical model, high-throughput screening bioactivity data from >8,070 chemicals in ToxCast/Tox21 across 10 in vitro assays relevant to the retinoid signaling system were evaluated and compared to literature-based candidate reference chemicals in the dataset. There were 48 chemicals identified for effects on both in vivo skeletal defects and in vitro ATRA pathway targets for computational modeling. The list included 28 chemicals with prior evidence of skeletal defects linked to retinoid toxicity and 20 chemicals without prior evidence. The combination of thoracic cage defects and DR5 (direct repeats of 5 nucleotides for RAR/RXR transactivation) disruption was the most frequently occurring phenotypic and target disturbance, respectively. This data model provides valuable AOP elucidation and validates current mechanistic understanding. These findings also shed light on potential avenues for new mechanistic discoveries related to ATRA pathway disruption and associated skeletal dysmorphogenesis due to environmental exposures.

5.
Birth Defects Res ; 114(16): 1037-1055, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35532929

RESUMO

BACKGROUND: The developmental toxicity potential (dTP) concentration from the devTOX quickPredict (devTOXqP ) assay, a metabolomics-based human induced pluripotent stem cell assay, predicts a chemical's developmental toxicity potency. Here, in vitro to in vivo extrapolation (IVIVE) approaches were applied to address whether the devTOXqP assay could quantitatively predict in vivo developmental toxicity lowest effect levels (LELs) for the prototypical teratogen valproic acid (VPA) and a group of structural analogues. METHODS: VPA and a series of structural analogues were tested with the devTOXqP assay to determine dTP concentration and we estimated the equivalent administered doses (EADs) that would lead to plasma concentrations equivalent to the in vitro dTP concentrations. The EADs were compared to the LELs in rat developmental toxicity studies, human clinical doses, and EADs reported using other in vitro assays. To evaluate the impact of different pharmacokinetic (PK) models on IVIVE outcomes, we compared EADs predicted using various open-source and commercially available PK and physiologically based PK (PBPK) models. To evaluate the effect of in vitro kinetics, an equilibrium distribution model was applied to translate dTP concentrations to free medium concentrations before subsequent IVIVE analyses. RESULTS: The EAD estimates for the VPA analogues based on different PK/PBPK models were quantitatively similar to in vivo data from both rats and humans, where available, and the derived rank order of the chemicals was consistent with observed in vivo developmental toxicity. Different models were identified that provided accurate predictions for rat prenatal LELs and conservative estimates of human safe exposure. The impact of in vitro kinetics on EAD estimates is chemical-dependent. EADs from this study were within range of predicted doses from other in vitro and model organism data. CONCLUSIONS: This study highlights the importance of pharmacokinetic considerations when using in vitro assays and demonstrates the utility of the devTOXqP human stem cell-based platform to quantitatively assess a chemical's developmental toxicity potency.


Assuntos
Células-Tronco Pluripotentes Induzidas , Ácido Valproico , Animais , Feminino , Humanos , Gravidez , Ratos , Teratógenos/toxicidade , Ácido Valproico/toxicidade
6.
Curr Res Toxicol ; 3: 100074, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35633891

RESUMO

This manuscript provides a review focused on embryonic stem cell-based models and their place within the landscape of alternative developmental toxicity assays. Against the background of the principles of developmental toxicology, the wide diversity of alternative methods using pluripotent stem cells developed in this area over the past half century is reviewed. In order to provide an overview of available models, a systematic scoping review was conducted following a published protocol with inclusion criteria, which were applied to select the assays. Critical aspects including biological domain, readout endpoint, availability of standardized protocols, chemical domain, reproducibility and predictive power of each assay are described in detail, in order to review the applicability and limitations of the platform in general and progress moving forward to implementation. The horizon of innovative routes of promoting regulatory implementation of alternative methods is scanned, and recommendations for further work are given.

7.
ALTEX ; 38(3): 513-522, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34164697

RESUMO

Systematic reviews are fast increasing in prevalence in the toxicology and environmental health literature. However, how well these complex research projects are being conducted and reported is unclear. Since editors have an essential role in ensuring the scientific quality of manuscripts being published in their journals, a workshop was convened where editors, systematic review practitioners, and research quality control experts could discuss what editors can do to ensure the systematic reviews they publish are of sufficient scientific quality. Interventions were explored along four themes: setting standards; reviewing protocols; optimizing editorial workflows; and measuring the effectiveness of editorial interventions. In total, 58 editorial interventions were proposed. Of these, 26 were shortlisted for being potentially effective, and 5 were prioritized as short-term actions that editors could relatively easily take to improve the quality of published systematic reviews. Recent progress in improving systematic reviews is summarized, and outstanding challenges to further progress are highlighted.


Assuntos
Políticas Editoriais , Saúde Ambiental , Controle de Qualidade , Fluxo de Trabalho
8.
Toxicol Sci ; 180(2): 198-211, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33555348

RESUMO

FutureTox IV, a Society of Toxicology Contemporary Concepts in Toxicology workshop, was held in November 2018. Building upon FutureTox I, II, and III, this conference focused on the latest science and technology for in vitro profiling and in silico modeling as it relates to predictive developmental and reproductive toxicity (DART). Publicly available high-throughput screening data sets are now available for broad in vitro profiling of bioactivities across large inventories of chemicals. Coupling this vast amount of mechanistic data with a deeper understanding of molecular embryology and post-natal development lays the groundwork for using new approach methodologies (NAMs) to evaluate chemical toxicity, drug efficacy, and safety assessment for embryo-fetal development. NAM is a term recently adopted in reference to any technology, methodology, approach, or combination thereof that can be used to provide information on chemical hazard and risk assessment to avoid the use of intact animals (U.S. Environmental Protection Agency [EPA], Strategic plan to promote the development and implementation of alternative test methods within the tsca program, 2018, https://www.epa.gov/sites/production/files/2018-06/documents/epa_alt_strat_plan_6-20-18_clean_final.pdf). There are challenges to implementing NAMs to evaluate chemicals for developmental toxicity compared with adult toxicity. This forum article reviews the 2018 workshop activities, highlighting challenges and opportunities for applying NAMs for adverse pregnancy outcomes (eg, preterm labor, malformations, low birth weight) as well as disorders manifesting postnatally (eg, neurodevelopmental impairment, breast cancer, cardiovascular disease, fertility). DART is an important concern for different regulatory statutes and test guidelines. Leveraging advancements in such approaches and the accompanying efficiencies to detecting potential hazards to human development are the unifying concepts toward implementing NAMs in DART testing. Although use of NAMs for higher level regulatory decision making is still on the horizon, the conference highlighted novel testing platforms and computational models that cover multiple levels of biological organization, with the unique temporal dynamics of embryonic development, and novel approaches for estimating toxicokinetic parameters essential in supporting in vitro to in vivo extrapolation.


Assuntos
Testes de Toxicidade , Toxicologia , Animais , Criança , Simulação por Computador , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Gravidez , Medição de Risco , Estados Unidos , United States Environmental Protection Agency
9.
Birth Defects Res ; 113(7): 546-559, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33496083

RESUMO

Cellular analysis of developmental processes and toxicities has traditionally entailed bulk methods (e.g., transcriptomics) that lack single cell resolution or tissue localization methods (e.g., immunostaining) that allow only a few genes to be monitored in each experiment. Recent technological advances have enabled interrogation of genomic function at the single-cell level, providing new opportunities to unravel developmental pathways and processes with unprecedented resolution. Here, we review emerging technologies of single-cell RNA-sequencing (scRNA-seq) to globally characterize the gene expression sets of different cell types and how different cell types emerge from earlier cell states in development. Cell atlases of experimental embryology and human embryogenesis at single-cell resolution will provide an encyclopedia of genes that define key stages from gastrulation to organogenesis. This technology, combined with computational models to discover key organizational principles, was recognized by Science magazine as the "Breakthrough of the year" for 2018 due to transformative potential on the way we study how human cells mature over a lifetime, how tissues regenerate, and how cells change in diseases (e.g., patient-derived organoids to screen disease-specific targets and design precision therapy). Profiling transcriptomes at the single-cell level can fulfill the need for greater detail in the molecular progression of all cell lineages, from pluripotency to adulthood and how cell-cell signaling pathways control progression at every step. Translational opportunities emerge for elucidating pathogenesis of genetic birth defects with cellular precision and improvements for predictive toxicology of chemical teratogenesis.


Assuntos
Análise de Célula Única , Transcriptoma , Adulto , Humanos , Análise de Sequência de RNA , Transdução de Sinais , Transcriptoma/genética
10.
Reprod Toxicol ; 99: 160-167, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32926990

RESUMO

In recent years, the development and implementation of animal-free approaches to chemical and pharmaceutical hazard and risk assessment has taken off. Alternative approaches are being developed starting from the perspective of human biology and physiology. Neural tube closure is a vital step that occurs early in human development. Correct closure of the neural tube depends on a complex interplay between proteins along a number of protein concentration gradients. The sensitivity of neural tube closure to chemical disturbance of signalling pathways such as the retinoid pathway, is well known. To map the pathways underlying neural tube closure, literature data on the molecular regulation of neural tube closure were collected. As the process of neural tube closure is highly conserved in vertebrates, the extensive literature available for the mouse was used whilst considering its relevance for humans. Thus, important cell compartments, regulatory pathways, and protein interactions essential for neural tube closure under physiological circumstances were identified and mapped. An understanding of aberrant processes leading to neural tube defects (NTDs) requires detailed maps of neural tube embryology, including the complex genetic signals and responses underlying critical cellular dynamical and biomechanical processes. The retinoid signaling pathway serves as a case study for this ontology because of well-defined crosstalk with the genetic control of neural tube patterning and morphogenesis. It is a known target for mechanistically-diverse chemical structures that disrupt neural tube closure The data presented in this manuscript will set the stage for constructing mathematical models and computer simulation of neural tube closure for human-relevant AOPs and predictive toxicology.


Assuntos
Modelos Biológicos , Tubo Neural/crescimento & desenvolvimento , Animais , Simulação por Computador , Ectoderma , Desenvolvimento Embrionário , Humanos , Mesoderma , Camundongos , Crista Neural , Placa Neural , Defeitos do Tubo Neural , Notocorda , Biologia de Sistemas , Tretinoína/metabolismo
11.
Reprod Toxicol ; 99: 109-130, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33202217

RESUMO

All-trans retinoic acid (ATRA), the biologically active form of vitamin A, is instrumental in regulating the patterning and specification of the vertebrate embryo. Various animal models demonstrate adverse developmental phenotypes following experimental retinoid depletion or excess during pregnancy. Windows of vulnerability for altered skeletal patterning coincide with early specification of the body plan (gastrulation) and regional specification of precursor cell populations forming the facial skeleton (cranial neural crest), vertebral column (somites), and limbs (lateral plate mesoderm) during organogenesis. A common theme in physiological roles of ATRA signaling is mutual antagonism with FGF signaling. Consequences of genetic errors or environmental disruption of retinoid signaling include stage- and region-specific homeotic transformations to severe deficiencies for various skeletal elements. This review derives from an annex in Detailed Review Paper (DRP) of the OECD Test Guidelines Programme (Project 4.97) to support recommendations regarding assay development for the retinoid system and the use of resulting data in a regulatory context for developmental and reproductive toxicity (DART) testing.


Assuntos
Desenvolvimento Ósseo , Retinoides/metabolismo , Animais , Osso e Ossos/anormalidades , Osso e Ossos/metabolismo , Humanos , Transdução de Sinais , Teratogênese
12.
J Pediatr Urol ; 16(6): 791-804, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33097421

RESUMO

Congenital anomalies of the external genitalia (CAEG) are a prevalent and serious public health concern with lifelong impacts on the urinary function, sexual health, fertility, tumor development, and psychosocial wellbeing of affected individuals. Complications of treatment are frequent, and data reflecting long-term outcomes in adulthood are limited. To identify a path forward to improve treatments and realize the possibility of preventing CAEG, the National Institute of Diabetes and Digestive and Kidney Diseases and the American Urological Association convened researchers from a range of disciplines to coordinate research efforts to fully understand the different etiologies of these common conditions, subsequent variation in clinical phenotypes, and best practices for long term surgical success. Meeting participants concluded that a central data hub for clinical evaluations, including collection of DNA samples from patients and their parents, and short interviews to determine familial penetrance (small pedigrees), would accelerate research in this field. Such a centralized datahub will advance efforts to develop detailed multi-dimensional phenotyping and will enable access to genome sequence analyses and associated metadata to define the genetic bases for these conditions. Inclusion of tissue samples and integration of clinical studies with basic research using human cells and animal models will advance efforts to identify the developmental mechanisms that are disrupted during development and will add cellular and molecular granularity to phenotyping CAEG. While the discussion focuses heavily on hypospadias, this can be seen as a potential template for other conditions in the realm of CAEG, including cryptorchidism or the exstrophy-epispadias complex. Taken together with long-term clinical follow-up, these data could inform surgical choices and improve likelihood for long-term success.


Assuntos
Extrofia Vesical , Epispadia , Adulto , Animais , Genitália , Humanos , Masculino , National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) , Pesquisa Translacional Biomédica , Estados Unidos
13.
Reprod Toxicol ; 96: 300-315, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32590145

RESUMO

Development of the neurovascular unit (NVU) is a complex, multistage process that requires orchestrated cell signaling mechanisms across several cell types and ultimately results in formation of the blood-brain barrier. Typical high-throughput screening (HTS) assays investigate single biochemical or single cell responses following chemical insult. As the NVU comprises multiple cell types interacting at various stages of development, a methodology combining high-throughput results across pertinent cell-based assays is needed to investigate potential chemical-induced disruption to the development of this complex cell system. To this end, we implemented a novel method for screening putative NVU disruptors across diverse assay platforms to predict chemical perturbation of the developing NVU. HTS assay results measuring chemical-induced perturbations to cellular key events across angiogenic and neurogenic outcomes in vitro were combined to create a cell-based prioritization of NVU hazard. Chemicals were grouped according to similar modes of action to train a logistic regression literature model on a training set of 38 chemicals. This model utilizes the chemical-specific pairwise mutual information score for PubMed MeSH annotations to represent a quantitative measure of previously published results. Taken together, this study presents a methodology to investigate NVU developmental hazard using cell-based HTS assays and literature evidence to prioritize screening of putative NVU disruptors towards a knowledge-driven characterization of neurovascular developmental toxicity. The results from these screening efforts demonstrate that chemicals representing a range of putative vascular disrupting compound (pVDC) scores can also produce effects on neurogenic outcomes and characterizes possible modes of action for disrupting the developing NVU.


Assuntos
Substâncias Perigosas/toxicidade , Ensaios de Triagem em Larga Escala , Bioensaio , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Fibroblastos/efeitos dos fármacos , Humanos , Neovascularização Fisiológica/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Crista Neural/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos
15.
Regul Toxicol Pharmacol ; 114: 104668, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32335207

RESUMO

The European Partnership for Alternative Approaches to Animal Testing (EPAA) convened a 'Blue Sky Workshop' on new ideas for non-animal approaches to predict repeated-dose systemic toxicity. The aim of the Workshop was to formulate strategic ideas to improve and increase the applicability, implementation and acceptance of modern non-animal methods to determine systemic toxicity. The Workshop concluded that good progress is being made to assess repeated dose toxicity without animals taking advantage of existing knowledge in toxicology, thresholds of toxicological concern, adverse outcome pathways and read-across workflows. These approaches can be supported by New Approach Methodologies (NAMs) utilising modern molecular technologies and computational methods. Recommendations from the Workshop were based around the needs for better chemical safety assessment: how to strengthen the evidence base for decision making; to develop, standardise and harmonise NAMs for human toxicity; and the improvement in the applicability and acceptance of novel techniques. "Disruptive thinking" is required to reconsider chemical legislation, validation of NAMs and the opportunities to move away from reliance on animal tests. Case study practices and data sharing, ensuring reproducibility of NAMs, were viewed as crucial to the improvement of non-animal test approaches for systemic toxicity.


Assuntos
Alternativas aos Testes com Animais , Testes de Toxicidade , Rotas de Resultados Adversos , Animais , Segurança Química , Relação Dose-Resposta a Droga , Humanos
16.
Toxicol Sci ; 174(2): 189-209, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32073639

RESUMO

The Stemina devTOX quickPredict platform is a human pluripotent stem cell-based assay that predicts the developmental toxicity potential based on changes in cellular metabolism following chemical exposure [Palmer, J. A., Smith, A. M., Egnash, L. A., Conard, K. R., West, P. R., Burrier, R. E., Donley, E. L. R., and Kirchner, F. R. (2013). Establishment and assessment of a new human embryonic stem cell-based biomarker assay for developmental toxicity screening. Birth Defects Res. B Dev. Reprod. Toxicol. 98, 343-363]. Using this assay, we screened 1065 ToxCast phase I and II chemicals in single-concentration or concentration-response for the targeted biomarker (ratio of ornithine to cystine secreted or consumed from the media). The dataset from the Stemina (STM) assay is annotated in the ToxCast portfolio as STM. Major findings from the analysis of ToxCast_STM dataset include (1) 19% of 1065 chemicals yielded a prediction of developmental toxicity, (2) assay performance reached 79%-82% accuracy with high specificity (> 84%) but modest sensitivity (< 67%) when compared with in vivo animal models of human prenatal developmental toxicity, (3) sensitivity improved as more stringent weights of evidence requirements were applied to the animal studies, and (4) statistical analysis of the most potent chemical hits on specific biochemical targets in ToxCast revealed positive and negative associations with the STM response, providing insights into the mechanistic underpinnings of the targeted endpoint and its biological domain. The results of this study will be useful to improving our ability to predict in vivo developmental toxicants based on in vitro data and in silico models.


Assuntos
Alternativas aos Testes com Animais , Células-Tronco Pluripotentes/efeitos dos fármacos , Testes de Toxicidade , Animais , Bioensaio , Biomarcadores/metabolismo , Linhagem Celular , Bases de Dados Factuais , Relação Dose-Resposta a Droga , Ensaios de Triagem em Larga Escala , Humanos , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/patologia , Medição de Risco
17.
Birth Defects Res ; 112(1): 19-39, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31471948

RESUMO

Cleft palate has been linked to both genetic and environmental factors that perturb key events during palatal morphogenesis. As a developmental outcome, it presents a challenging, mechanistically complex endpoint for predictive modeling. A data set of 500 chemicals evaluated for their ability to induce cleft palate in animal prenatal developmental studies was compiled from Toxicity Reference Database and the biomedical literature, which included 63 cleft palate active and 437 inactive chemicals. To characterize the potential molecular targets for chemical-induced cleft palate, we mined the ToxCast high-throughput screening database for patterns and linkages in bioactivity profiles and chemical structural descriptors. ToxCast assay results were filtered for cytotoxicity and grouped by target gene activity to produce a "gene score." Following unsuccessful attempts to derive a global prediction model using structural and gene score descriptors, hierarchical clustering was applied to the set of 63 cleft palate positives to extract local structure-bioactivity clusters for follow-up study. Patterns of enrichment were confirmed on the complete data set, that is, including cleft palate inactives, and putative molecular initiating events identified. The clusters corresponded to ToxCast assays for cytochrome P450s, G-protein coupled receptors, retinoic acid receptors, the glucocorticoid receptor, and tyrosine kinases/phosphatases. These patterns and linkages were organized into preliminary decision trees and the resulting inferences were mapped to a putative adverse outcome pathway framework for cleft palate supported by literature evidence of current mechanistic understanding. This general data-driven approach offers a promising avenue for mining chemical-bioassay drivers of complex developmental endpoints where data are often limited.


Assuntos
Fissura Palatina/etiologia , Bibliotecas de Moléculas Pequenas/análise , Testes de Toxicidade/métodos , Análise por Conglomerados , Bases de Dados Factuais , Feminino , Seguimentos , Ensaios de Triagem em Larga Escala/métodos , Humanos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Medição de Risco
18.
Reprod Toxicol ; 91: 1-13, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31600526

RESUMO

Endoderm gives rise to the gut tube in the early embryo. We differentiated human induced pluripotent stem cells (hiPSCs) to embryonic endoderm to identify a "tipping point" at which the developing system did not recover from perturbations caused by exposure to all-trans retinoic acid (ATRA). Differentiating hiPSC-derived endoderm exposed to five concentrations of ATRA between 0.001 and 10 µM at 6 h, 96 h, or 192 h was assessed for forkhead box A2 (FOXA2) protein expression and global gene transcript expression. A tipping point of 17 ±â€¯11 nM was identified where patterns of differentially expressed genes supported a developmental trajectory shift indicating a potential teratogenic outcome. This concentration is between women's endogenous ATRA blood plasma levels and teratogenic levels of circulating isotretinoin, an ATRA isomer used to treat acne. Taken together, these data suggest that this approach is a sensitive method to identify a point of departure for chemicals that impact early embryonic development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Teratógenos/toxicidade , Tretinoína/toxicidade , Diferenciação Celular , Linhagem Celular , Humanos
19.
Curr Opin Toxicol ; 23-24(Oct-Dec 2020): 119-126, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36561131

RESUMO

New approach methodologies (NAMs) refer to any non-animal technology, methodology, approach, or combination thereof that can be used to provide information on chemical hazard and risk assessment that avoids the use of intact animals. A spectrum of in silico models is needed for the integrated analysis of various domains in toxicology to improve predictivity and reduce animal testing. This review focuses on in silico approaches, computer models, and computational intelligence for developmental and reproductive toxicity (predictive DART), providing a means to measure toxicodynamics in simulated systems for quantitative prediction of adverse outcomes phenotypes.

20.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...